Spatiotemporal control of gene expression with pulse-generating networks.

نویسندگان

  • Subhayu Basu
  • Rishabh Mehreja
  • Stephan Thiberge
  • Ming-Tang Chen
  • Ron Weiss
چکیده

One of the important challenges in the emerging field of synthetic biology is designing artificial networks that achieve coordinated behavior in cell communities. Here we present a synthetic multicellular bacterial system where receiver cells exhibit transient gene expression in response to a long-lasting signal from neighboring sender cells. The engineered sender cells synthesize an inducer, an acyl-homoserine lactone (AHL), which freely diffuses to spatially proximate receiver cells. The receiver cells contain a pulse-generator circuit that incorporates a feed-forward regulatory motif. The circuit responds to a long-lasting increase in the level of AHL by transiently activating, and then repressing, the expression of a GFP. Based on simulation models, we engineered variants of the pulse-generator circuit that exhibit different quantitative responses such as increased duration and intensity of the pulse. As shown by our models and experiments, the maximum amplitude and timing of the pulse depend not only on the final inducer concentration, but also on its rate of increase. The ability to differentiate between various rates of increase in inducer concentrations affords the system a unique spatiotemporal behavior for cells grown on solid media. Specifically, receiver cells can respond to communication from nearby sender cells while completely ignoring communication from senders cells further away, despite the fact that AHL concentrations eventually reach high levels everywhere. Because of the resemblance to naturally occurring feed-forward motifs, the pulse generator can serve as a model to improve our understanding of such systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction of Blasting Cost in Limestone Mines Using Gene Expression Programming Model and Artificial Neural Networks

The use of blasting cost (BC) prediction to achieve optimal fragmentation is necessary in order to control the adverse consequences of blasting such as fly rock, ground vibration, and air blast in open-pit mines. In this research work, BC is predicted through collecting 146 blasting data from six limestone mines in Iran using the artificial neural networks (ANNs), gene expression programming (G...

متن کامل

STUDY OF HMGA2 GENE INHIBITION WITH SPECIFIC SHRNA AND SIRNA AND INVESTIGATION OF CORRESPONDING EFFECTS ON DOWNSTREAM GENE EXPRESSION IN MDA-MB-231 CANCER CELLS: A BIOINFORMATIC AND EXPERIMENTAL STUDY

Background & Aims: The use of siRNA to silence gene expression is increasingly expanding today. The aim of this study is to bioinformatically and experimentally investigate the inhibition of the HMGA2 gene and its corresponding effects on downstream genes expression rate in MDA-MB-231 cancer cell treated by shRNA and siRNA specific to HMGA2. Materials & Methods: To perform this bioinformatic a...

متن کامل

Analysis of Gene Expression, Signaling Pathways, and Interaction Networks of Some Effective Genes in Patients with Asthma in Microarray Studies Using R Software

 Background and purpose: Asthma is a chronic inflammatory disorder of the airways caused by a combination of complex environmental and genetic interactions. There is an incomplete understanding of this mechanism which affect both severity of the disease and how it responds to treatment. Different gene expressions are reported in patients with asthma and healthy controls. Materials and methods:...

متن کامل

اثرتمرین استقامتی بر میزان بیان ژن CDK5 در بخش حرکتی نخاع رت‌های نر ویستار دارای نوروپاتی دیابت

Background: Increased and decreased CDK5 gene expression regulation, as a protein kinase, is associated with launching death or survival pathways in the nervous system. According to the chronic effects of endurance training on growth Germination, Neuronal function and improvement of pathological conditions of neurodegenerative diseases, the aim of our study was to investigate the effect of 6 W...

متن کامل

H∞ Sampled-Data Controller Design for Stochastic Genetic Regulatory Networks

Artificially regulating gene expression is an important step in developing new treatment for system-level disease such as cancer. In this paper, we propose a method to regulate gene expression based on sampled-data measurements of gene products concentrations. Inherent noisy behaviour of Gene regulatory networks are modeled with stochastic nonlinear differential equation. To synthesize feed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 101 17  شماره 

صفحات  -

تاریخ انتشار 2004